Interactive Abstract Interpretation

Julian Erhard

julian.erhard@tum.de

CONVEY

Supervisors: Helmut Seidl & Dirk Beyer

Collaborators: Michael Schwarz (CONVEY) &
Sarah Tilscher (CONVEY) & Simmo Saan (UTartu) & Vesal Vojdani (UTartu) E

M Goal B Consistency
Putting static analysis at the fingertips of the developer Low precision loss through incremental analysis out-of-the-box.
Issue: Values of flow-1nsensitive unknowns accumulate over reanaly-

Ses.
Solution: Restart subset G of globals, as follows:

_/ *Reset g € GG to

e Set unknowns that side-effected to g and all that (transitively) depend
M Yard-Sticks on them to unstable

e Reanalysis from 7,,,;, triggers side-effects to g in new equation sys-
tem

1. Response time:

Time 1t takes for the analysis to finish after a program change

2. Consistency: —> New values for g € G without contributions from previous runs.

Level of precision that 1s retained compared to a from-scratch anal-

ySI1S B Usability

3. Usability: IDE integation via MagpieBridge [1], using
Level of integration into the developer worktlow server mode for Goblint: Y

T

ead_mutex_t mutexl = PTH
:xm“ﬁﬁﬁz read_mutex_t mutex2 = PTHRE

4 int myglobal;

' e Communication IDE <= GOBLINT via [sz
B Response-Time EEE
sockets S— |

void *t_fun(void *arg) {
pthread_mutex_lock(&mutexl);

pthread_mutex_unlock (&mutexl);
return NULL;

19 myglohai=my51;bal+l_;

Incremental analysis [2]. e Configuration is maintained

ain(void) {
et id;

* Exploit dependencies tracked by solver f : e Works without restart of analyzer and repars-

ing of unchanged code

e Reuse analysis results where possible

* Detect changed functions £ j,qnged

e Mark results influenced by f € Fipangea as M Results

unstable

Thread-modular, partially context-sensitive analysis with intervals and

e Restart analvysis from return-node r,,.;,, of . L .
Y e race-detection performed on commits in zstd, chrony, figlet reposito-

maln .
, v I'1CS.
Reluctant destabilization: ORONENC)
A 1096] P from-scratch| v/ | - | - | -
. I— incremental | - |V |V |V
e First reanalyze f € Finanged e o | 1Y
o . . printf ("%d\n”, y); %1024— | 1 d tb))) \/
*Only destabilize call-sites of [if results for £ J,f A
E I ,,_F Table 1: Features active in confs. (1)-(4).
node ry changed R P conf. 2) conf. (3) conf. (4)
. . . ______,{if"' — o solve total | solve total solve total
Fine-grained change detection: e e sstd | 17.8 150 747 408 1552 574
f m " | | | | - W chrony| 9.3 5.4 475 94| 549 96
e Match control—ﬂow—graphs of f c Fo.un ged T s figlet | 11.8 4.9 61.2 7.1] 8.1 74

with previous version

Figure 1: Cumulative distribution of commits ana- Table2: Median speedups of solving (incl. postsolv-

lyzed within the given run time for setups (1)-(4) on 1ng) and overall run times achieved by configurations
zstd. (2)-(4) compared to (1) on the benchmark reposito-

ries.

e Reuse results for nodes within f that

—can be matched, and

—do not have any new (indirect) predecessor

Incremental postsolver: M Conclusion

* Track unknowns not touched by reanalysis * Considerable speedups by interactive analysis
o 1 -
Rilllsl? warnings for such unknowns that are e Smaller overall speedups on smaller projects, due to other bottle-
Still 11ve necks
int f (int x) { int m() { e Restarting mitigates precision loss on flow-1nsensitive information
int v = x + 42; int a = 25;
// Add printf int b = f(a);
printf ("$d\n", v); return Db; M References
return vy; }
} [1] L. Luo et al. “MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and

Editors (Tool Insights Paper)”. In: ECOOP 2019. Ed. by A. F. Donaldson. Vol. 134. LIPIcs.
Schloss Dagstuhl, 2019.

[2] H. Seidl et al. “Incremental Abstract Interpretation”. In: From Lambda Calculus to Cybersecurity
Through Program Analysis. Vol. 12065 LNCS. Springer, 2020, pp. 132-148.

Listing 1: Code example with change. A printf is added to f.

Evolving Systems

https://www.cs.cit.tum.de/pl/personen/julian-erhard/

