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Research Questions

How can we extend reinforcement learning to achieve
that safety specifications are always fulfilled?

How can we integrate complex safety specifications of
cyber-physical systems in reinforcement learning?

H Provably Safe Reinforcement Learning

Def. Provably safe RL provides guarantees for the safety
specifications during learning and deployment. The spec-
1fications are task-specific, and there are various ways to
define them [1].

Three approaches of provably safe RL:
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We can formulate the projection to the closest safe control
input as an optimization problem [2]:
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(d;;,b;1, E;1) 1 g 1s the polynomial level set describing the
collisions 2 for the halfspace constraint [ of the unsafe set.
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B Action Masking for Autonomous Driving
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 Commonroad-RL 1s an open-source reinforcement learn-
ing environment for autonomous driving [3].

 For highway driving, goal reaching decreases by 10 % to
87.5% on highD dataset compared to unsafe baseline [4].

e For urban driving, adding more traffic rules 1s necessary
to increase goal reaching (about 30 % on 1nD dataset) [5].

B Safe Motion Planning for Autonomous Vessels
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OpenSeaMap map of the scenario Corresponding CommonQOcean scenario

 CommonQOcean 1s a benchmarking suite for motion plan-
ning on the water [6].

e Formalization of traffic rules in temporal logic [7], e.g.,

G (keep(xego, To, %) = (notuming(x@g@, ) U —keep(Zego, To, *))) .

B Probabilistic Guarantees via Temporal Logic
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Real-world experiment
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Modularity and transferability 1s achieved by separating
safety specifications and performance objectives [3].
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