
Transfer of Methods Between Different Schools of Verification

Marek Jankola
marek.jankola@sosy.ifi.lmu.de

Supervisors: Dirk Beyer

Collaborators: Po-Chun Chien, Nian-Ze Lee,
Marian Lingsch-Rosenfeld, Jan Strejček

CONVEY

Motivation

The model checking problem M |= φ varies in different
contexts:

•M : transition system, C program, hardware circuit, etc.

•φ: general LTL formula, safety property, termination, etc.

•The Goal: answer the problem, provide proof/certificate,
provide the shortest counterexample, etc.

Depending on the context, different methods were devel-
oped across the verification schools. Can we transfer some
of these methods between the schools to solve the problem
in a different context?

The Shortest Counterexample (FoSSaCS 2024)

If φ is a safety property, finding the shortest counterex-
ample reduces to finding the shortest violation trace in the
transition system. For specifications given by LTL or ω-
automata, we need an infinite counterexample.

•The shortest counterexample: cab(abab)ω → c(ab)ω

• If Tight automata are used for the specification, finding
the shortest counterexample reduces to finding the short-
est path.

•We proposed a more effective way to construct these au-
tomata and show how hard it is theoretically, to reduce
this problem:

2Ω(n) ≺ Ω
(n− 1

2
!
)

O(n! · n3) ≺ O((
√
2n)2n)

Hardware Circuit → C Program (FSE 2024)

•Multiple verification algorithm were invented first for
hardware and later adapted to software.

•There are two algorithms ISMC and DAR that were not
adapted before.

•We made a systematic transferability study for ISMC and
DAR:

Hypothesis from ISMC Paper Confirmed
H1.A ISMC faster in finding bugs ✓

H1.B ISMC faster in proving property if high unrolling bound ?
H1.C ISMC overall faster ?

Hypothesis from DAR Paper Confirmed
H2.A DAR performs more local phases than global ✓

H2.B DAR faster in proving property ?
H2.C DAR computes more interpolants ✓

H2.D DAR’s runtime more sensitive to sizes of interpolants ?
H2.E DAR overall faster than IMC ?

Specifications → Reachability (SPIN 2025)

Numerous well-performing methods can verify a program
against reachability property. Our modular framework
based on instrumentation automata takes a control-flow of
a program and transforms it in a way, that it can be verified
against reachability.

Tools with -R suffix are reachability analyzers. The com-
parison against termination verifiers:

Reachability Witness ↔ Termination Witness

Reduction from termination to reachability via transfor-
mation is a known approach to termination analysis. We
show that the construction and validation of termination
witnesses can be reduced with a similar construction. P =

(X,S,R, Init) is a program and P ′ the transformed pro-
gram:

Definition 1: Invariant
Formula I(s) of P ′ is
•1-step invariant if (∃s′ ∈ R : R+(s′, s)) =⇒ I(s)

•safe if I(s) =⇒ saved = 0 ∨
∨

x∈X s(x) ̸= s(x′).

Definition 2: Transition Invariant
T (s, s′) is a transition invariant of P if R+ ⊆ T . Program
P is terminating iff there exists well-founded transition
invariant.

Theorem 1: Transition Invariants ↔ Invariants
I(x̂0, . . . , x̂n, x0, . . . , xn) is a safe 1-step invariant of P ′

iff it is a well-founded transition invariant of P .

CONVEY Evolving Systems
This work was supported by European Union’s Horizon Europe program under the grant agreement No. 101087529, the Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY) and Czech Science
Foundation grant GA23-06506S


