
Thread-Modular Abstract Interpretation for Multi-Threaded Code

Michael Schwarz
m.schwarz@tum.de

Supervisors: Helmut Seidl & Dirk Beyer

Collaborators: Julian Erhard (CONVEY) & Sarah Tilscher (CONVEY)
& Simmo Saan (UTartu) & Vesal Vojdani (UTartu) & Kalmer Apinis (UTartu)

CONVEY

Thread-Modular Abstract Interpretation for
Multi-Threaded Code

Michael Schwarz∗ Simmo Saan Helmut Seidl? Julian Erhard∗ Vesal Vojdani
∗:ConVeY Doctoral Researcher ?: ConVeY PI

Technical University of Munich University of Tartu

Setting
Multi-threaded software is ubiquitous, a lot of communication
happens via global variables. Thread-modular analyses needed
to avoid state explosion

Approaches from literature

Miné’s style (e.g. [2])
•Propagate values from unlocks of
a mutex to its locks, provided
appropriate side-conditions are met

Vojdani’s style (e.g. [5, 6])
•Compute set of protecting mutexes
always held when global is accessed
•Publish value on unlock of last
protecting mutex

main :
lock(b); g = 0; unlock(b);
y = create(t1);
lock(a);
lock(b);
x = g;
...

t1:
lock(a);
lock(b);
g = 42;
unlock(a);
g = 17;
unlock(b);

•Miné: x 7→ {0, 17, 42}
•Vojdani: x 7→ {0, 17}
Generally, incomparable!

Contributions in Non-Relational Setting
•Formulation of both styles in a common framework
•Comparison
•Principled soundness proofs for both styles of analyses
• Identify weaknesses and propose improved versions

Side-Effecting Equation Systems[1]

Accumulate flow-insensitive information for globals during flow-sensitive
analysis of locals

u v
unlock(b)

r
u, unlock(b)

z]
η = Let σ′ = . . . In

({[g] 7→ (η [u]) g | g ∈ . . . }, σ′)
Side-Effects Contribution to [v]

Ingredients for More Precise Analyses

Consider further finite abstraction to exclude more reads

For each global g
•W g: Set of locksets held when last writing to g
•P g: Set of locksets held since last writing to g

For each mutex a
•La: Set of locksets held when last acquiring a
•V a: Set of globals that must have been written
locally since last acquiring a

Combined
(L, V,W, P )

Write-Centered
(W,P )

Protection-Based
(Vojdani-style)

Lock-Centered
(L, V )

Miné

Experimental Evaluation

Analyses implemented within the static analysis framework for multi-
threaded C programs Goblint[6].
Benchmarks: 13 not-too-small multi-threaded Posix programs
Runtime: Increases with sophistication

Protection-Based Miné ([2]) Lock-Centered Write-Centered Combined

ctr
ace

(66
5)

pfs
can

(60
0)

kno
t (9

87)

age
t (6

03)
0

1

2

3

An
aly

sis
tim

e[
s]

ypb
ind

(10
35)

sm
tpr
c (
310

2)

iow
arr
ior
(13
58)

w8
397

7af
(15
15)

adu
tux

(15
09)

teg
ra2
0 (
156

0)

ma
rve
ll1
(24
76)

ma
rve
ll2
(24
76)

nsc
(23
94)

0

15

30

45

Figure 1:Analysis times per benchmark program (logical LoC in parentheses).

Precision: (as measured by abstract values of globals read)
•Equally precise for 11/13 benchmarks
•For pfscan and ypbind: [2] less precise for 6% resp. 16% of globals

Experimental Conclusions

Protection-Based Analysis sufficiently precise at low cost.

Clustered Relational Analysis with Local Traces [4]

•Relations between globals are likely to be mediated by mutexes
•Relational analyses inspired by Protection-Based Analysis
•Framework for precision improvement by seamlessly incorporating
further finite abstractions (e.g. thread ids)
•Tracking bigger clusters may be both more and less precise ?!
•For certain domains (e.g. Octagons), tracking subclusters of size ≤ 2
already yields maximum precision

References

[1] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. Side-effecting constraint systems: a swiss army knife
for program analysis. In APLAS ’12, pages 157–172. Springer, 2012.

[2] Antoine Miné. Static analysis of run-time errors in embedded real-time parallel C programs. Logical
Methods in Computer Science, 8(1):1–63, mar 2012.

[3] Michael Schwarz, Simmo Saan, Helmut Seidl, Kalmer Apinis, Julian Erhard, and Vesal Vojdani.
Improving thread-modular abstract interpretation. In SAS ’21. Springer, 2021.

[4] Michael Schwarz, Simmo Saan, Helmut Seidl, Julian Erhard, and Vesal Vojdani. Clustered relational
thread-modular abstract interpretation with local traces. In ESOP ’23. Springer, 2023.

[5] Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs. PhD thesis, University of
Tartu., December 2010.

[6] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo Vene, and Ralf Vogler. Static Race
Detection for Device Drivers: The Goblint Approach. In ASE ’16, pages 391–402. ACM, 2016.

CONVEY Evolving Systems

https://goblint.in.tum.de/papers

