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Setting
Multi-threaded software is ubiquitous, a lot of communication
happens via global variables. Thread-modular analyses needed
to avoid state explosion

Approaches from literature

Miné’s style (e.g. [2])
•Propagate values from unlocks of
a mutex to its locks, provided
appropriate side-conditions are met

Vojdani’s style (e.g. [5, 6])
•Compute set of protecting mutexes
always held when global is accessed
•Publish value on unlock of last
protecting mutex

main :
lock(b); g = 0; unlock(b);
y = create(t1);
lock(a);
lock(b);
x = g;
...

t1:
lock(a);
lock(b);
g = 42;
unlock(a);
g = 17;
unlock(b);

•Miné: x 7→ {0, 17, 42}
•Vojdani: x 7→ {0, 17}
Generally, incomparable!

Contributions in Non-Relational Setting
•Formulation of both styles in a common framework
•Comparison
•Principled soundness proofs for both styles of analyses
• Identify weaknesses and propose improved versions

Side-Effecting Equation Systems[1]

Accumulate flow-insensitive information for globals during flow-sensitive
analysis of locals
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Ingredients for More Precise Analyses

Consider further finite abstraction to exclude more reads

For each global g
•W g: Set of locksets held when last writing to g
•P g: Set of locksets held since last writing to g

For each mutex a
•La: Set of locksets held when last acquiring a
•V a: Set of globals that must have been written
locally since last acquiring a

Combined
(L, V,W, P )

Write-Centered
(W,P )

Protection-Based
(Vojdani-style)

Lock-Centered
(L, V )

Miné

Experimental Evaluation

Analyses implemented within the static analysis framework for multi-
threaded C programs Goblint[6].
Benchmarks: 13 not-too-small multi-threaded Posix programs
Runtime: Increases with sophistication

Protection-Based Miné ([2]) Lock-Centered Write-Centered Combined
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Figure 1:Analysis times per benchmark program (logical LoC in parentheses).

Precision: (as measured by abstract values of globals read)
•Equally precise for 11/13 benchmarks
•For pfscan and ypbind: [2] less precise for 6% resp. 16% of globals

Experimental Conclusions

Protection-Based Analysis sufficiently precise at low cost.

Clustered Relational Analysis with Local Traces [4]

•Relations between globals are likely to be mediated by mutexes
•Relational analyses inspired by Protection-Based Analysis
•Framework for precision improvement by seamlessly incorporating
further finite abstractions (e.g. thread ids)
•Tracking bigger clusters may be both more and less precise ?!
•For certain domains (e.g. Octagons), tracking subclusters of size ≤ 2
already yields maximum precision
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