Making IP = PSPACE Practical with BDD Algorithms

Philipp Czerner
czerner@in.tum.de
Supervisors: Javier Esparza & Helmut Seidl
Collaborators: Eszter Couillard & Javier Esparza (ConVey) & Rupak Majumdar

Evolving AR-Systems
Correctness of automated reasoning (AR) systems (e.g., model checkers, theorem provers, SAT and SMT-solvers) is crucial. Full verification (correctness for all inputs) is impractical for evolving AR-systems—it is costly and must be repeated with each change. Certification checks the output as it is being produced. It is an attractive alternative as it suffices to verify the certificate checker.
To be practical, the checker must be efficient, i.e., not add excessive overhead.

Goal: Efficient Certification for PSPACE
The famous IP = PSPACE breakthrough in complexity theory [1,2] proves existence of efficient certification through interactive protocols (IPs) for any PSPACE problem. This has not been used in automated reasoning—until now. We combine it with binary decision diagrams, which are successfully used in practice, to get the first practical certification method for PSPACE with polynomial-time verification.

Interactive Protocols
Polynomial Verifier checks claims of unbounded, but untrusted, Prover

BDDs Binary Decision Diagrams
Uniquely represent arbitrary boolean functions; efficient boolean operations.

While exponential in the worst-case, in practice BDDs are often effective. They are used for CTL model checking, circuit equivalence, and many more.

We show: any BDD-based algorithm yields a Prover implementation with constant-factor overhead! (compared with the BDD algorithm)

Efficient Certification
Efficient non-interactive certificates exist for SAT, but not for UNSAT or PSPACE problems, which are common in AR. Instead, extended resolution proofs (ERPs) are used. In practice, certificate validation is often too expensive, as it must be performed by trusted code that cannot be optimised well.

Evaluation
We implement our approach as blic [3], a new certifying QBF solver, and compare against state-of-the-art certifying (PGBDDQ, DepQBF) and non-certifying (CAQE) solvers [4,5,6], on the crafted instances track of QBF Eval 2022.

Directions for Future Work
- Have Prover answer challenges on-the-fly, avoiding memory overhead
- Make interactive certificates convincing to third parties, with cryptographic hashes
- Adapt other practical approaches (e.g., CDCL) to generate interactive certificates
- Integrate BDD optimisations, e.g., garbage collection, sifting